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The Motion of the Observer in Celestial Navigation

George H� Kaplan
U�S� Naval Observatory

Abstract Conventional approaches to celestial navigation are based on the geometry of a
stationary observer� Any motion of the observer during the time observations are taken must
be compensated for before a �x can be determined� Several methods have been developed
that account for the observer�s motion and allow a �x to be determined� These methods
are summarized and reviewed�
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Introduction

The object of celestial navigation is the determination of the latitude and longitude of a vessel at
a speci�c time� through the use of observations of the altitudes of celestial bodies� Each observation
de�nes a circle of position on the surface of the Earth� and the small segment of the circle that
passes near the observer�s estimated position is represented as a line of position �LOP�� A position
�x is located at the intersection of two or more LOPs� This construction works for a �xed observer
or simultaneous observations� However� if the observer is moving� the LOPs from two consecutive
observations do not necessarily intersect at a point corresponding to the observer�s position at any
time� if three or more observations are involved� there may be no common intersection� Since
celestial navigation normally involves a single observer on a moving ship� something has to be done
to account for the change in the observer�s position during the time required to take a series of
observations� This report reviews the methods used to deal with the observer�s motion� A basic
familiarity with the procedures� terminology� and notation of celestial navigation is assumed�

The fundamental principle involved is that each point on an LOP represents a possible true
location of the vessel at the time of the observation� and should therefore move with the vessel�s
course and speed �Bowditch �	
� pp� 	��	���� Since the estimated position of the vessel also
moves with the vessel�s course and speed� an equivalent principle is that the di�erence between a
vessel�s true position and its estimated position�the error in position�remains constant� in two
coordinates� as the vessel moves� The two coordinates are usually taken to be azimuth and distance�
We have not distinguished here between the vessel�s actual course and speed and its assumed course
and speed� For the present� we will consider the vessel�s course and speed to be known exactly� or
at least well enough that any resulting errors are negligible compared to the errors of observation�

Chart�Based Approach

In the chart�based approach to celestial navigation� the principle that an LOP moves with the
vessel�s course and speed can be directly applied� The procedure is called advancing an LOP �to
a later time� or retiring and LOP �to an earlier time�� The plotting is done on a Mercator chart�
where rhumb�line tracks are straight lines�

Consider a single celestial observation consisting of a sextant altitude� hs� of a known body made
at time t from estimated position p� We assume that hs is appropriately corrected for instrumental
error� dip� refraction� etc�� yielding the observed altitude Ho� The observed body�s computed altitude
and azimuth� Hc and Zn� are obtained in the usual way for time t and position p� the altitude intercept
a � Ho�Hc evaluated� and the LOP drawn�
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Now suppose we have a group of such observations� taken from a moving vessel� each made at a
di�erent time and position� A �x is to be determined from these observations for some time t� when
the vessel is at estimated position p�� We will assume that t� is within the period of time spanned
by the observations �often� t� will be the time of one of the observations�� For each observation�
the interval between the time of observation and the time of the �x is �t � t� � t� If the vessel�s
course� C� and speed� S� are constant� in the interval between a given observation and the time of
the �x the vessel�s track is a rhumb line of length S�t in the direction C� a line that connects points
p and p�� �We are assuming that C and S have been adjusted for the current�s set and drift�� In
the chart�based approach to celestial navigation� each observation is advanced �if �t is positive� or
retired �if �t is negative� to the time of the �x by simply moving its LOP on a Mercator chart by
the amount S�t in the direction C� Each LOP�s azimuth is held constant during this process� that
is� the relocated LOP is drawn parallel to the original LOP� The distance of the relocated LOP from
point p� is the same as the distance of the original LOP from point p� For details of the plotting
procedure� see Bowditch �	
� pp� 	��	���

If each observation�s LOP is properly advanced �or retired� in this way� the LOPs should intersect
�to within observational error� at a point near p�� This intersection de�nes the �x for time t��

Mathematical Approaches

For mathematical approaches to sight reduction� there are several algorithms that account for
the change in the observer�s position� These are all based on the principle that the di�erence between
the true and estimated positions does not change signi�cantly as the vessel moves� That is� the error
in position remains essentially constant in two coordinates�

Linearized LOPs A mathematical approach to celestial navigation is presented in ��
 that
is based on the plane geometry and straight lines formed by LOPs near the estimated position� A
least�squares solution for the �x is used� The method is a direct mathematical translation of chart�
based navigation� It was developed independently at the Royal Greenwich Observatory �RGO� and
is described in RGO�s publication Compact Data for Navigation and Astronomy ��
� The algorithm
is also brie�y presented on page ��� of the Nautical Almanac� in the section titled �Position from
intercept and azimuth using a calculator�� In this method� the equation for each straight�line LOP
is developed with respect to the estimated position p at the time t of the observation� In rectangular
coordinates �nautical miles east�west and north�south� any point �x� y� on the LOP satis�es

a � x sin Zn � y cos Zn �	�

where a is the altitude intercept �in arcminutes�� The estimated position p at the time of the obser�
vation is used as the basis for the computations as well as the origin of the rectangular coordinate
system used� In this construction� advancing or retiring an LOP amounts to simply a change of ori�
gin� and the origin can be any point along the vessel�s estimated track� Thus� to advance the LOPs
to the time of the �x we simply consider that the equations �	� for all the LOPs refer to a common
origin at p�� the estimated position of the vessel at the time of the �x� Then the equations can be
solved� using a least�squares procedure� for x and y �in nautical miles�� The point �x� y� represents
the best estimate �in a least�squares sense� of the intersection point of all the LOPs with respect
to p�� After the solution is computed� the resulting x and y values are converted to corrections to
longitude and latitude and applied to point p� to form the �x�

This procedure thus uses equation �	� as a conditional equation for a least�squares solution for
the error in position� Each conditional equation that enters the solution is computed for the time
and estimated position of an individual observation� yet the positional parameters solved for �x and
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y� are assumed to be constant o�sets that apply to every estimated position in the problem� This is
simply a restatement of the principle of constant error described above� with the linear coordinates
x and y substituting for azimuth and distance�

For the sight�reduction algorithm described in ��
� a nearly identical strategy is suggested to
deal with the motion of the observer� This algorithm uses a di�erent conditional equation� which
allows the least�squares solution to directly yield corrections to estimated latitude and longitude�
Applied to a moving observer� this procedure depends on the assumption that there is a constant
error in latitude and a constant error in longitude� This assumption is somewhat di�erent from the
principle of constant error that we have been using�

Motion�of�Observer Formula Another way to account for the observer�s motion� commonly
used� is to adjust each observed altitude for the change in the position of the observer during the
time �t� This motion�of�observer correction� in arcminutes� is

�Ho �
S�t

��
cos�Zn� C� ���

where S is in knots and �t is in minutes of time� then �Ho� which is in arcminutes� is added
to the observed altitude� The quantity Ho � �Ho represents the altitude that the observed body
would have if it were observed at the same time t but from a di�erent position�a position S�t

further along the vessel�s track� which is p�� Essentially� use of this formula holds the geographical
position �GP� of the observed body �xed �the GP for time t�� but de�nes a new circle of position
for the observation� for positive �t� the circle has a larger radius if the vessel�s course is away from
the body or a smaller radius if the vessel�s course is toward the body� For the small area on the
surface of the Earth near the vessel�s track� this is essentially equivalent to advancing �or retiring�
the observation�s LOP�

Applied to all observations� each with a di�erent �t� equation ��� yields a set of LOPs that
intersect near p�� de�ning the �x for time t�� When equation ��� is used� the Hc and Zn values are
computed for the individual observation times t but for the common position p�� Equation ��� is
an approximation� of course� but it works quite well for observations taken within a few minutes of
each other� Even out to distances S�t of �� nmi �typically 	� hours of sailing� the error in the
formula itself is usually only a few tenths of an arcminute�

Adjustment of Celestial Coordinates Equation ��� adjusts the observed altitudes� but
alternatively� one can make the corresponding adjustments in the celestial equatorial coordinates�
hour angle and declination�of the observed body� An exact solution for a two�body �x is presented
in ��
� and the paper also contains a thorough explanation and development of formulas for adjusting
celestial coordinates for both a change in time and a change in the observer�s position� These formulas
are meant to be applied over relatively short periods of time �an hour or less� and relatively small
changes of position �	� nmi or less�� Equation ��� in ��
 provides for the change in declination of
one body and equation ��� in ��
 provides for the change in the di�erence between the local hour
angles of two bodies�

More generally� advancing �or retiring� an LOP in the conventional manner can be accomplished
by advancing �or retiring� the position of the object observed �Bowditch �	
� p� 	���� For celestial
LOPs� this is accomplished mathematically by changing the GP of the observed body� which� of
course� means adjusting its celestial coordinates� How can the Greenwich hour angle and declination
of the observed body be adjusted to correctly advance its LOP� In the chart�based procedure� a
section of each observation�s LOP is moved by an amount S�t in the direction C� However� this
is not� in general� the shift that should be applied to the GP� We want to move the GP in such

�



a way that the error in position�the vector between a vessel�s true position and its estimated
position�remains constant� in both length and orientation� as the vessel moves� So if we have an
altitude observation made from estimated position p� and we want to use that observation to correct
an estimated position p�� then we assume that the altitude intercept and azimuth computed for
position p also apply to p�� Essentially� we imagine a celestial body� observed from position p��
with the same altitude and azimuth as the real celestial body observed from position p� For this
construction� Ho is left unadjusted� and to maintain the same Hc and Zn� the Greenwich hour angle
and declination of the imaginary body must be

GHA � ��� � arccos

�
sin Hc� sin�� sin d

cos�� cos d

� �
� if 	��� � Zn � ����

� otherwise

Dec � arctan

�
sin d

cosd

�

where sin d � sin�� sin Hc � cos�� cosHc cos Zn

cos d �
q

	� sin� d

���

and where �� and �� are the latitude �north positive� and longitude �east positive� of position p��
and Hc and Zn are the computed altitude and azimuth of the real body observed from position p

at time t� Note that in the equation for GHA� arccos�� � �� will always be positive� leaving a sign
ambiguity that is resolved using the azimuth Zn� Equations ��� are simply a reversal of the usual
altitude�azimuth formulas� applied to point p�� Once GHA and Dec have been obtained using
these equations� the entire sight reduction process �whatever process is used� can proceed as if the
observation were taken from position p�� with Ho� Hc� and Zn unchanged� The e�ect is to properly
advance the LOP from near p to near p��

Note that equations ��� do not involve C� S� or �t� no assumptions have been made about how
the vessel gets from p to p�� or how long it takes� In this sense this procedure is similar to the
linearized LOP scheme� and can� in principle� be applied over extended lengths of time or multiple
voyage legs�

Equivalence of the Procedures The three mathematical procedures outlined above should
yield virtually identical results for an ordinary round of sights� given the same input data and the
same sailing formulas� For example� when applied to the sight�reduction sample case on pp� ������
of the 	��� Nautical Almanac� the linearized LOP algorithm and the procedure of adjusting celestial
coordinates give identical �xes� Use of the motion�of�observer formula yields a �x that is di�erent
by only ���� arcminute�

When combining observations taken over a longer span of time� it is important to remember that
the motion�of�observer formula is an approximation that degrades as the length of the track over
which the observations have been taken increases� The other two procedures do not su�er the same
kind of degradation and remain correct and equivalent �given the validity of the basic principles�
regardless of the observation span� In any event� the degree of equivalence among these procedures
indicates only mathematical precision and should not be mistaken for navigational accuracy�

Limitations of the Procedures

The fundamental principle that is the basis of the chart�based procedure of advancing or retiring
LOPs is that each point on an LOP represents a possible location for the vessel at the time of the
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observation� and should therefore move with the vessel�s course and speed� The equivalent principle
that is the basis of the mathematical procedures is that the error in the observer�s estimated position�
in two coordinates� does not signi�cantly change as the vessel moves� These principles and the way
they are applied deserve some closer scrutiny�

First� a celestial LOP is actually a circle� and if it is advanced so that each point on it follows
a rhumb line de�ned by the vessel�s course and speed� it will not precisely retain its shape� Even a
short LOP segment� represented as a straight line� will not� in general� maintain a constant azimuth
during such a transformation� Therefore� the usual chart�based construction� in which the advanced
LOP is held parallel to the original� is not rigorously correct� One way to visualize the situation
is to note that the scale on a Mercator chart is a function of latitude� �At mid latitudes� the scale
changes by 	�� per degree of latitude�� Di�erent points on the original LOP� at di�erent latitudes�
should therefore advance di�erent amounts on the chart because the scale is slightly di�erent at each
point� This means that the advanced LOP should not be drawn precisely parallel to the original
LOP� At mid latitudes� the change in the azimuth of the LOP will typically amount to a few tenths
of a degree for an advance of �� nmi�

A similar di�culty arises with the principle of constant error� The notion that the positional
error does not change as the vessel moves is contradicted by the mathematics of rhumb lines �except
for the trivial case where the positional error is zero�� Suppose we have two neighboring points on
the surface of the Earth� and we extend a rhumb line from each point at the same azimuth for the
same distance� The end points will not� in general� be the same distance from each other as the
starting points� nor will their relative azimuths be the same� If we identify one of the starting points
with a vessel�s true position and the other with its estimated position� we see that the positional
error must change as the vessel moves� The change is of order ��	 nmi for starting points �� nmi
apart and rhumb lines �� nmi long�

These are small e�ects� and in applying either of the two basic principles to real navigational
situations� we need to be concerned with the resulting errors only if their magnitude approaches
or exceeds that of the errors of observation� Clearly� for conventional celestial navigation� where
the observational accuracy is of order �	�� neither of the mathematical problems described above
rises to this level� Much more important in practice is the fact that we do not know the observer�s
motion exactly� For the normal case of a ship sailing a rhumb�line track� what we are concerned
about is how well the course� C� and the speed� S� are known over bottom as a function of time�
The accuracy of these quantities is usually limited by our inexact knowledge of the local current� In
the reduction of a series of celestial observations� the e�ect of errors in the ship�s assumed motion is
systematic the estimated positions� the computed altitudes� and the altitude intercepts all change�
How badly the resulting �x is shifted depends on the magnitude of the errors in course and speed
and the accuracy� timing� and geometry of the observations� The usual rule of thumb for sights made
with a hand�held sextant is that di�culties may arise for observations spread over more than about
half an hour� If automated star trackers or similar high�accuracy devices were used for shipboard
celestial navigation� observations spread over only a few minutes might be problematic�

In traditional navigational practice� this problem is minimized by taking a small number of ob�
servations within a very short period of time�a round of sights� Nevertheless� navigators frequently
have to combine observations made hours apart� especially during the day� In such cases the familiar
procedures are followed despite the inherent problems because there has been no other choice�

Another Approach

The observations themselves contain information on the actual track of the vessel� so the possibil�
ity exists that the sight�reduction procedure can be made self�correcting� Given enough observations�
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suitably distributed in time and azimuth� an estimate of the average over�bottom track of the vessel
can be obtained as part of the solution for the �x� A development is presented in ��
 that includes the
observer�s motion as an essential part of the mathematics of celestial navigation� rather than as an
add�on� This algorithm can recover course and speed information from the observations� The entire
problem is thus solved with one mathematical procedure� This algorithm has been incorporated
into software developed by the U�S� Naval Observatory for Navy shipboard use�

This approach would be especially useful for high�accuracy automated observing systems� The
procedure does not have signi�cant advantages over more conventional methods for the normal round
of sights� made with a hand�held sextant� since for low�accuracy observations it can determine course
and speed only from an extended series of sights�
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